Targeting TNF and Its Family Members in Autoimmune/Inflammatory Disease
نویسندگان
چکیده
Tumor necrosis factor (TNF), a pleiotropic cytokine mainly produced by activated macrophages, modulates a wide range of biological functions in multiple tissues and organs. Besides its effects on tumor cell death, TNF is a key mediator of both acute and chronic inflammation. Since the description of TNF in the 1970s and through consideration of structural homologies, a total of 19 TNF-related cytokines have now been regrouped into a large family called the TNF ligand superfamily (TNFSF), whose members interact with TNF receptor superfamily (TNFRSF) members. More than 150,000 scientific publications (!) concerning TNF and its family members are available, demonstrating the strong interest of the scientific community in this molecule. Numerous studies implicating TNF family members in the pathophysiology of human autoimmune/inflammatory diseases have supported the emergence of TNF blocking agents developed for treatment of human disease, particularly over the last decade. These biotherapies, in the form of (I) chimeric, humanized, or human anti-TNF monoclonal antibodies or (II) fusion proteins involving a soluble TNF receptor, have been very successful in ameliorating disease signs and symptoms, especially in patients suffering from rheumatoid arthritis (RA) and Crohn's disease. Nonetheless, several aspects of these beneficial effects remain enigmatic. Moreover, the modulatory factors influencing TNF production by macrophages are not all known. Nevertheless, it is expected that over the next few years we will witness an increasing number of diseases for which TNF-blockade therapy is indicated. In this special issue, eleven papers including research articles, review articles, and clinical studies provide new information and interesting discussion regarding current questions related to this hot topic. In the first group of articles, interesting data is presented about TNF-blocking therapies and modulation of TNF generation by macrophages. Y. Lv et al. studied the nonneuronal cholinergic system existing in macrophages and show in a murine monocyte/macrophage cell line that bacterial lipopolysaccharide (LPS) exposure enhances autocrine acetylcholine production associated with an attenuation of TNF release. In this same cell line, K. Borzęcka et al. determined that, during high dose LPS stimulation, CD14 together with scavenger receptors is required for the binding of LPS but has a limited and dispensable contribution to TNF production. R. Cascão et al. recently identified gambogic acid as a simultaneous blocker of IL-1í µí»½ and TNF secretion and described here a beneficial anti-inflammatory effect of gambogic acid in rat antigen-induced arthritis. Interestingly, F. R. Spinelli et al. show that blocking TNF biological effects during RA …
منابع مشابه
P133: Targeting NF-Κb Signaling Pathway as Potential Therapeutic with Curcumin in Treatment of Multiple Sclerosis
Curcumin is active component of turmeric and isolated from the rhizome of turmeric, a phenolic natural product. One of inflammatory disease is multiple sclerosis, a multifocal chronic autoimmune inflammatory disease of the CNS, which is also known as a perivascular demyelinating disease. Studies have been shown that neuro-inflammation can have both harmful and beneficial effects on the neuronal...
متن کاملفاکتور نکروزدهنده تومور آلفا و راهکارهای مهار آن: مقاله مروری
Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory cytokine produced by a variety of cells, including hematopoietic and non-hematopoietic cells, malignant cells, macrophages, B lymphocytes, T lymphocytes, natural killer cells, neutrophils, astrocytes, endothelial cells, and smooth muscle cells. TNF-α is a homo-trimeric molecular whose individual subunits are composed of antiparallel beta...
متن کاملO 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملRole of Interleukin-37 in Inflammatory and Autoimmune Diseases
Interleukin-1 family 7 (IL-1F7) is a novel member of IL-1F cytokines. IL-1F7 is more commonly known as IL-37. IL-37 join the α-subunit of the IL-18 receptor, or IL-18 binding protein (IL-18BP), and binding of these proteins can enhance the IL-18 suppression. IL-37 also translocates to the cell nucleus and affects gene transcription. IL-37 inhibits the phosphorylation of p38 mitogen-activated pr...
متن کاملEffects of Coenzyme Q10 on the ratio of TH1/TH2 in Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis in C57BL/6
Background: Multiple sclerosis (MS) is known as a progressive central nervous system inflammatory disease. Certain factors, such as interleukins, inflammatory cells, and oxidative stress are supposed to involve in MS etiology. Because of the important role of oxidative stress, antioxidant therapy for MS has received more attention. Although coenzyme Q10 (CoQ10) acts as an antioxidant, there is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014